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CONVERSION FACTORS, NON-SI TO SI (METRIC)
UNITS OF MEASUREMENT

Non-SI units of measurement used in this report can be converted to SI

(metric) units as follows:

Muitipliy By To Obtain
degrees (angle) 0.01745329 radians
cycles per second 1.0 hertz
cycles per second 6.28318531 radians per
second
feet 0.3048 meters
inches 2.54 centimeters
acceleration of 980.665 centimeters/
gravity (standard) second/second
32.174 feet/second/
second
386.086 inches/second/
' second
gal 1.0 centimeters/
second/second
feet/second/second 30.4838 entimeters/
second/second
pounds 4.4822 newtons
tons 8.896 kilonewtons



INTRODUCTION TO THE COMPUTATION OF RESPONSE SPECTRUM

PART I: INTRODUCTION

1

1. This paper presents an introduction to the computation of a response

spectrum for earthquake loading. A response spectrum is a graphical relation-
ship of maximum values of acceleration, velocity, and/or displacement response

an infinite series of elastic single degree of freedom (SDOF) systems
subjected to a time dependent excitation. To accomplish this task, the formu-

lation and solution of the equation of motion for a damped SDOF system

a
<11 O-au

hian
uojecie

ct
L
o
'Y
i
)
§

dynamic excitation is reviewed prior to discussion of the

response spectrum.

2. Examples of idealized SDOF systems are shown in Figure 1. The
dynamic excitation may be due to the forcing function P(t) (Figure lc) acting

on the mass or to ground shaking, typically expressed in terms of a ground
acceleration time history, as shown in Figure 2. The dynamic response of
damped SDOF systems is described by the variations of displacement, velocity
and acceleration of the mass with time. A plot of the maximum values of
acceleration, velocity, and/or displacement of an infinite series of SDOF sys-
tems versus undamped natural period is called a res
3. The response spectrum is the cornerstone of modern earthquake engi-
neering and structural dynamics. It is used to calculate the dynamic response
of multi-degree of freedom (MDOF) semidiscrete structural models of buildin
and hydraulic structures (i.e. dams, locks, and intéie towers) as well as for
the evaluation of frequency content of recorded accelerograms. The frequency

content of accelerograms is of importance for selecting the ground motion(s)

ct
o

system and the dynamic equilibrium equation for the
I

system are introduced in Part I The derivation of the equation of motion
for a damped SDO y m subjected to a time dependent force history is

described in Part III. Part IV derives the equation of motion for the case of
a damped SDOF system subjected to earthquake shaking. This part also

describes how the earthquake shakin
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lent force history problem.
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nature of the acceleration time histories that have been recorded during

tems for developing response spectra.

Part VI describes the construction of response spectra using the
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systems

SDOF
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integration of the equations of motion for an infinite series o

The terms associated with response spectra

.

subjected to earthquake shaking.
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PART II: THE DYNAMIC EQUILIBRIUM EQUATION FOR A DAMPED SDOF SYSTEM

7. A damped SDOF system consists of a rigid mass m, a Iinear spring of
stiffness k, and a viscous damper with damping coefficient ¢, as shown in Fig-
ure 2. The viscous damper represents the energy absorbing co

ot
ed to a time dependent horizontal force

history P(t), while the SDOF system in Figure 2b is shaken by a time dependent
A3

second derivative of displacement x with respect to time. The dynamic

response of either system at any time t is governed by the relationship

Y F(t) =m Repeny (E) (L
Where
. (t) = the acceleration of the mace m
Xiotalllt the acceleraticon orf the mass m.

8. In earthquake engineering problems, the displacements, velocities

and accelerations of the rigid mass differ from those of the ground (Fig-
ure 2b). It is convenient to describe the motion of the rigid mass in terms

of the relative displacement of the mass with respect to the ground as

- ey FAFRY
AtOtlI\") Kground\"’

x(t) = the relative displacement
Xeota1(t) = the displacement of the mass from its at-rest position
Xground(t) = the displacement of the ground -
The relative velocity and relative acceleration of the mass m at time t are

obtained by differentiation of Equation 2

x(e) = *wtnl(t) - J.{gxound(t) (3)
and
x(t) = Xtotal(t) - Xground(t) (4)

The solutions to the two dynamic problems shown in Figure 2 are described in
Part III for
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9. This part describes the derivation of the ordinary differential

equation of second order that governs the dynamic response of the damped SDOF

- «drmom ol L L iiae. D e - A2 A o Xl o a1 Lo e TYL N\ [ . -
SysSiem Snown 1n1 rigure o L0 a timeé daependaernc exXxiternal 1orce r(u). inls simple
S

mechanical system serves as an introduction to the fundamentals of the

dynamics of a SDOF system and as background information for the dynamic prob-

lem inveolving a SDOF system undergoing a time dependent ground acceleration as
described in Part IV.

10. Assume that at time t, P(t) acts in the positive x direction (to
the right) and that the acceleration, velocity, and displacement of the mass
are positive. For this problem, the ground is at-rest (i.e. Xgroung = 0),

therefore xy,.,(t) is equal to x(t). The movement of the mass from its at-

1t stretches the sprin

k = the spring stiffness

x(t) = the displacement of the mass at time .t

[ %]

LR I RPOVY B S N
dmiriali iy, Ll

t is given by

where

¥(t) = the vaelocitv of ¢
(e) the veloclity ol €

Both f,(t) and f.(t) act in the negative x direction (to the left) at time t,
tending to restore the mass to its at-rest position (refer to Figure 3). The

sum of forces acting on the mass, the left-hand-cide of E

, th 1an is

Y F(t) = P(t) - £.(£) - £.(¢) (7)

and 7 into Equation

P
[
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Figure 3. Forces acting on a linear SDOF system at time t, external
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. .
The first term in E , associa

with the mass m undergoing an acceleration %(t), which acts opposite to the

Rt

(
direction of the acceleration of the mass m (refer to Figure 4).

Free Vibration

11. Free vibration results from the application of an initial displace-

© ViDldatlOll ILesSUlis 4 pLi 1 -l l0ll QL 4l i1l iilal

velocity with no external forcing function acting on the system

=
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f; () = mx(t)

Figure 4. Inertial force acting opposite to the
acceleration of mass m at time t, external force
P(t) applied
Undamped Free Vibration
i2. The equation of motion (Equation 8) for an undamped system (c = 0)
in free vibration is -
mx(t) + kx(t) =0 &)
and its solution is
2lE) = ¥ com Wt + X0 sin s (10)
AN Ay LUS We T -—J Dl11 weu N ’

where

X, = the initial displacement

X, = the initial velocity

13



and

=]k (11)

3

where
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Q
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3
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e
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Equation 10 is obtained using standard solution procedures for linear differ-
ential equations, such as the method of undetermined coefficients (Sec-

1972) The motion degcribed by Equaticon 10 and shown

-
oS A AT M- SLiUWLL

i1

(=

Figure 5a is cyclic with a constant maximum amplitude

'—__——

ey e, ['1 (12)
< Vdo [

lsrt X
x{ —°
I max (.)

and constant circular frequency w. - The cyclic nature of vibration may also be

expressed in terms of the natural period of vibration , T (sec), of the

undamped SDOF system as

T=2% (13)
(/]
or the natural cyclic frequency of vibration £ (cycles/sec or Hz) where
-1 _ @ (14N
L = = = —— \+7y
T 2 =r

13. Figure 6 shows the computed response of a SDOF system with

k =

1 N/m and mass m = 1 Kg, subjected to an initial displacement x, = 1 cm (%, =
0).* The circular frequency is equal to 1 radian/sec (by equation 11) and the

undamped natural period of vibration is equal to 2 x seconds. Plots of the

fan nf +hn moana Faw 2l £33 - ~ ~F
4AViL VL CIIT UIaoo LOUL (53 98— LLLOGU y C vL

(')

harmonic response are shown in Figure 6, as well as the variation with time of
t

the spring force and inertial force acting on the rigid mass. Note that the
£

o t+n rant+d £ 2 1 -3 - v
n acts copposite to th rection of the acceleration vector for
the rigid mass.
. . .
. X i £ 1 /7 2 & n
* One newton, N, is the force which gives an acceleration ¢f 1 m/sec® toc a
mass of 1 kg
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where: Wy = wi- B2

(b) Damped free vibration (damped at a ratio to critical

damping equal to B)
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The equation of motion for damped free vibration may be written as

14,
X(t) +2 P @ x(t) + @2 x(t) =0 (15)
where
p= S (16)
* 2mo

Rratiatdam T8 craan Anrderad Frmnm Datint-d - Q - 71N A3+x;3 A3+ annbh +anaeme har ol

uquau;u 1 4J ad Ui livecu Liviu Dl.lud.LJ.U 1 O _y \1i1) U.LVLU.LI.I.B callil LeLul Uy Lile 1dsSs
m, (2) introducing the constant B for the damping force term, and (3) P(t) set

equal to zero. The solution of Equation 15 is, for 8 < 1,
x{t) = e-tor | X, COS wpt #I—fii—EEEEL]sin @ tl (17)
1 o D o, D f

erf s le mom mwrmmemmcmt=3 AT Ter dmmnarfons T S i da e A AT ezt mae Lamm i s
iill all expullelitlally JdeCayluy, lplliuuc d4dild damnpea ciricular requency
Y = Ji - B2 (18)
W, = 0yl [
or period
- (19)

where w and T are the circular frequency and period of the undamped system,

respectively.

1c ... 0
1. wherr p

cating that the motion is no longer cyclic but after an initial maxim

placement, decays

wrd +1h
WiLll

T

owrotom
Systiei

is said to be "critically" damped.
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B = c = < (21)
Ceritical 2mo

is called the "damping ratio" or the "fraction of critical dampin

9

Typically £ ures § is less than 0.1 and for material damping in soiis

Fh

is less than 0.25. p may also be expressed as percentage. For typical struc-
r

tural systems the periods (or frequency) of the damped and undamped systems

Forced Vibration with Dynamic Force Applied to Mass

Ly o2 ]

16. The equation of motion (Equation 8) for the SDOF system (Figure 3)

may be written as

2(t) +2 B o () + 0? x(£) = 2L (23)

m

In general there are three approaches to the solution of Equation 23: closed

form solution

s, Duhamel’ge Integral

Closed Form Solutions

. For a simple harmonic force history, such as P(t) = Constant- sin
[Warive' t] in Equations 8 and 23, closed form solutions are available in numer-

ous textbooks on both mechanical vibrations and structural dynamics. This

- PR S | R

w0t practical for earthquake engineering problems invoiving

18. A second procedure used to solve for the dynamic response of a SDOF
system involves the representation of the load time history P(t) as a series

P
(2]
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20. Duhamel’'s integral for a damped SDOF system is

x(t) = —1 [ P(t) et~ gin [w,(t - 1)] dv (24)

m o
s S p ‘b

where

wp = the damped circular frequency of vibration (Equation 18),

al o e I 0 2 Y e L . L __:L_-_A__-,_ftn__ a2 TN

w = LIl 11U pea clicuidl l1ieguerncy oL vibraition (Lquation 11i)

B = the fraction of critical damping (Equation 21).

21. For a select few load time histories P(t), the integral may be
muwraTecmdend ILaam s Yoamaam meeV me Lmam e ae e Lo f b e e o ® e . 1 1.
cvaiuatcu diireculiy. 1licpuldl LOULCE Liue I111S5SL0L1les LequLLe nuunericdr soiu-

tions to be used to evaluate Duhamel'’s integral. These procedures are

described in numerous textbooks on structural dynamics.

Numerical Methods

22 For most earth

used to solve a form of Equation 8 or Equation 23 due to the irregular form of

force time histories. Numerical methods will be discussed in Part V.

[
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Introducing d% from (a) into %, of (b), the incremental displacement is given by

1 rq 1 [ -1
dx(t) = —— —P(T)dTl sinlw(t -T)
w l.._m . — | - |

(¢) Incremental displacement at time t due to a single pulse
at time r

,t
x(t) = ! dx(t) dT
/]

pt
« « =— [ Pty sin[wet -1 o
ma, [P T

VO BN § 29 e B I 2 1
(@) bunamei’s 1ntegral

Fiogure 8. (Continued) .
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PART IV: ORDINARY DIFFERENTIAL EQUATION FOR A DAMPED SDOF SYSTEM -
GROUND ACCELERATION

23. This part describes the derivation of the ordinary differential
equation of second order that governs the dynamic response of the damped SDOF

system shown in Figure 2b shaken by a horizontal ground acceleration

that at time t, Kgrouna(t) 1s positive (to the right) and the acceleration,

velocity, and displacement of the mass are positive. The restoring forces of

the spring and dashpot shown in Figure 9 are given by Equations 5 and 6,
respectively. Combination of Equation 1
€ s o PAPIREY 71\
L F(C) = mX,,.a,(C) (1)
Equation 5
£(8) = k x () (5)
and Equation 6
£(t) = c x(¢t) (6)
result in
mX. a0 (L) + cX(t) + kx(t) =0 (25)

where x and x are relative velocity and displacement of the mass (Equations 2

and 3) valid at any time t. The first term in Equation 19 represents the

inertial force f;, associated with the mass m undergoing a total acceleration
Xtota1(t) . This force vector acts opposite to the direction of the total

acceleration vector of the mass m, as shown in Figure 9. Substituting Equa-

tion 4 into Equation 25 for %

mX(t) + cX(t) + kx=-mRg,,(t) (26)
or
Z(t) +2 B @ x(t) + 02 x(t) = ~ %, ,(E) (27)

22
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where

B = the damping ratio (Equation 21)

The terms associated with the relative movement of the mass are collected on

23



(Equation 25 or 26) describes the dynamic response of a damped SDOF system
h

Equivalent SDOF Problems

24. Comparison of Equation 26 with Equation 8 shows that the relation-
ships for the two SDOF systems shown in Figure 2 differ by the term on the

1 ... Tow e
equal si {the fcorce h ). Thus, the problem of a

gn
damped SROF system shaken by a time varying ground acceleration is equivalent
to the problem of a damped SDOF system resting on a fixed base and subjected

s
de - m¥

to a time dependent force P(t) of magnitu * Xeround» @S shown in Figure 10,
A .
k g k
Z—_JV___ 2
K MASS, m — 1 MASS, m —_—
4 Z—-{]——T Pt} = “MX gy (1)
,4 ‘; ! '

e e o o i 4

— R roung () FIXED BASE

GROUND ACCELERATION v oad s
l— ;grwrd L M AAA.. .

STEP 1, SOLVE

Figure 10. Equivalent dynamic SDOF system problems

olution of the Equation of Motion

25. The total dynamic res

..... dynam
in two steps. Step 1 solves for the relative response of the damped SDOF

system as governed by the ordinary differential Equation 27, and

the total response is equal to the sum of th

plus the motion of the ground.



26. For simple harmonic ground accelerations (e.g. XKgrouna = Con-

=

s to Equation 27 are av ailable

n

- - S .+

stant: sin 1Wdrive VI ) c
numerous textbooks on both mechanical vibrations and structural dynamics.
cal for earthquake engineering problems due to the

i
d acceleration time histories.

irregular nature of groun 1 1
-
Duhamel'’s Integral

~- a Y 1 . A n malean £ i len el abfern Al marnTlamnAamant ~F

27. A second procedure used to soive IOr tneé reéilative daispiacement or
the SDOF system involves the representation of the load time history P(t) = -
mX, ouna(t) as a series of impulse loadings P(r) applied to the SDOF system

intervals dr (Figure 7). By introducing P(t) = -

for infinitesimal time
tion

m¥g ouma(t) into Equat 24, Duhamel’s integral for a damped SDOF system is

1 r¢t - - .
x(t) = - — Kgrouna (t) €P9E-9 sin [wp(t - 1)) do (28)
wD 00
where
wp = the damped angular frequency of vibration (Equation 18)
w = the undamped angular frequency of vibration (Equation 11)

B = the fraction of critical damping (Equation 16)
n

ry

The irregular forms of acceleration time histories require numerical solutions

Numerical Methods

28. 1In usual applications to earthquake engineering problems, numerical

methods are used to solve Equation 27 or Equation 28 for the relative dis-

gular nature of ground accelera-

N
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PART V: SOLUTION OF DYNAMIC EQUILIBRIUM EQUATIONS FOR A DAMPED
SDOF SYSTEM USING NUMERICAL METHODS

29. This part introduces the fundamentals of numerical methods used to
solve for the accelerations, velocities, and displacements of a damped SDOF
system due to a time dependent loading. 1In general, there are two categories
of numerical methods used for solving the dynamic equilibrium equation:
direct integration methods and frequency-domain methods. This part discusses
direct integration methods only. The reader is referred to books on struc-

tural dynamics for a description of frequency-domain methods.

Direct Intepration Methods

30. Direct integration methods are used to solve for the response of
the SDOF (and MDOF semidiscrete structural models) by direct integration of
the dynamic equilibrium equations at closely spaced, discrete time intervals
throughout the time of shaking using a numerical step-by-step procedure of
analysis. The term "direct" means that prior to numerical integration, there
is no transformation of the equations into a different form, as is done in a
frequency-domain analysis. Table 1 lists some of the step-by-step algorithms
used in structural dynamics for both SDOF systems and MDOF semidiscrete struc-
tural models and in the characterization of ground motions for earthquake
engineering problems.

31. Direct integration methods are based on two concepts. First, the
equation of motion (Equation 27) is satisfied at discrete points in time (i.e.
t, t + At, ...) during earthquake shaking, and second, the forms of the varia-
tion in displacements, velocities, and accelerations within each time inter-
val, At, are assumed. Direct integration time methods are classified as
either explicit integration methods or implicit integration methods. The
explicit integration method solves for the unknown values of Xy 4+ a¢, X¢ + ats
and X, 4 5, at each new time (t + At) using the equation of motion at time t,
with the known values for x,, x,, and X, at time t as the initial conditions.
The implicit integration method solves for the unknown values of X 4 ar, Xt + at
and X, 4 5y at each new time (t + At) using the equation of motion at time (t +
At). For MDOF systems implicit schemes require the solution of a set of

simultaneous linear equations, whereas explicit schemes involve the solution

26



Table 1

Step-by-Step Algorithms Used in Structural Dynamics

Family of

Structural Example

Dynamics of Stability Order of
Algorithms Algorithm Type Condition Accuracy
collocation Wilson-4 Implicit unconditional o(at)?
methods for 6>1.366
Newmark-f + Average acceleration Implicit unconditional#* 0(At)?
methods (trapezoidal rule)

Linear acceleration Implicit conditional 0(At)?

Fox-Goodwin formula Implicit conditional 0(at)?

Central difference Explicit conditional 0(At)23*
Houbolt'’s Implicit unconditional 0(At)?
method
a-method Hilber-Hughes-Taylor Implicit unconditional¥* o(at)?

Wood-Bossak-

Zienkiewicz Implicit unconditional* o(at)?
6,-method Hoff-Pahl Implicit unconditional* o(at)?
beta-m .
method Katona-Zienkiewicz Implicit unconditional* 0(At)?

* For select values of constants used in algorithm.
of a set of linear equations, each of which involves a single unknown. Both
implicit and explicit step-by-step algorithms are listed in Table 1. Implicit

algorithms are the more popular of the two types of numerical methods in

earthquake engineering problems because of the larger size time step that may

be used in the analysis.

However, implicit methods involve considerable com-

putational effort at each time step compared to explicit methods since the

coefficient matrices for MDOF systems must be formulated, stored, and manipu-

lated using matrix solution procedures.

27



Linear Acceleration Method

32. The principles common to all step-by-step time integration solu-
tions of the equations of motions are illustrated for the Figure 10 SDOF sys-
tem by applying the linear acceleration algorithm to this problem for a single
time interval At. The dynamic response of the mass to an earthquake time
history at each time step is expressed in terms of the values for the dis-
placement, the velocity, and the acceleration of the mass.

33. The linear acceleration algorithm, one of the simpler forms of the
Newmark-g family of implicit algorithms, assumes a linear variation in
acceleration of the mass from time t to time (t + At) as shown in Figure 11.
The values for the three variables are known at time t, and the values are
unknown at time (t + At).

34. The assumed linear variation in acceleration provides one of the
four equations used in the linear acceleration algorithm. The slope is
expressed in terms of the values of acceleration at time t and time (t + At),
as listed in Figure 11. Two additional equations are provided by twice inte-
grating the linear acceleration relationship from time t to time (t + At).
This results in a quadratic variation in velocity of the mass over time step
At and a cubic variation in displacements of the mass over time At (Fig-
ure 11). The fourth equation is given by the equation of motion at time (t +
At).

35. Figure §f summarizes the three steps when solving for the dynamic
response of the mass at each new time (t + At). The three relationships shown
in this figure were obtained by rearranging the four relationships listed in
Figure 10. The first stage of the analysis involves the application of the
step-by-step procedure of analysis during the time of earthquake shaking,
computing the time histories of response for the mass. Due to the nature of
the formulation, the computed acceleration time history is the relative
acceleration of the mass. The total acceleration of mass is equal to the sum
of the relative acceleration values computed at each time step, and the corre-

sponding ground acceleration values (step 2 in Figure 10).

Time Step

36. The selection of the size of the time step At to be used in the

step-by-step calculation of the dynamic response of the SDOF (and of MDOF

28
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(unknown) = RHS (known)

E

step 1, solve constant;,s X.,,, = constantg,g

. step 2, solve for Xeeae = {T3£]Xt+At - term,
r 6 1
step 3, solve for R,a, = |ff|xt‘_,Ac - term,
L (AE)4]
where the constants are given by
r 3 1 r 6 1
constanty,s = k + |=| c +|-—=—|m
Lat] L(ac)]

[s}]
fu

Pppe = - m j?ground(t +At)

v 1+ 2 9
g Y &

t

Figure 12. Solution for the dynamic response of the mass at time
(t + At) using the linear acceleration algorithm

w
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semidiscrete structural models) is restricted by stability and accuracy con-
siderations. The primary requirement of a numerical algorithm is that the
computed response converge to the exact response as At -+ 0 (Hughes 1987). The
stability and accuracy criteria are expressed in terms of a maximum allowable
size for the time step, At&iucﬂn which differs among the various numerical

algorithms.

Stability

37. The stability condition requirements for numerical algorithms are
categorized as either unconditional or conditional (Table 1). Bathe and
Wilson (1976), Bathe (1982), and Hughes (1987) describe an integration method
as unconditionally stable if the numerical solution for any initial value
problem (e.g. Figure 5a) does not grow without bound for any time step At,
especially if the time step is large. The method is conditionally stable if
the previous statement is true only for those cases in which At is less than
some critical time step At .yijca1- The stability criterion for a numerical
algorithm is established by the values assigned to the constants that are used
in the algorithm and the terms associated with the structural model (Hughes
and Belytshko 1983, Hughes 1987, and Dokainish and Subbaraj 1989). For
example, numerical stability considerations for the linear acceleration method
require that the time step At of a SDOF system be restricted to values given
by the relationship

At < Atcriticnl (29)
where
2 1 3
At riticar = —wj' Ag =7 3,‘@ =T % (30)

The values of At . ;;ceq1 are summarized in Hughes and Belytshko (1983), Hughes
(1987), and Dokainish and Subbaraj (1989) for other algorithms.

38. The attributes of a stable numerical analysis are illustrated using
the free vibration problem of an undamped SDOF system shown in Figure 13,
given an initial displacement x, and an initial velocity %,. With no damping,

the exact solution for this initial value problem is a harmonic function that
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ical solution that corresponds to the exact solution. Figure 13a results
t

with Figure 13b results for the unstable free vibration response
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Accuracy

_____ a3

40. The accuracy of a numerical algorithm is associated with th

e
of convergence of the computed response to the exact response as At + 0

(Hughes 1987). For the dynamic analysis of MDOF semidiscrete structural
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concerned with the question of the computed response of spurious higher (fre-

quency) modes of the semidiscrete model of the structural system. In general,

as compared to the stability requirements. For explicit methods, stability
t

requirements usually dictate the maximum

accuracy of numerical algorithm. Illustrated in Figure-14 is a free vibration

P Py

problem of an undamped SDOF system subjected to an initial displacement x, and

constant maximum amplitude. Figure 14b iliustrates resuits for the free
vibration response computed using a numerical algorithm. The errors in Figure

14b computed results take the form of amplitude decay with time and period

Ot = 1LO LalC 1

B~
N
(@)
=]
(0]
V]

o

el
=
o]



g

mx ¢« kx = O

INITIAL CONDITIONS:  x(t-0) - Xg
x(t-0) - %o

cos wt + —2 sin
) wt

L T G Y
N NN
go \ / \ / » time
7 \ / \ / /
0 NG /.
(a) Exact solution for free vibration response
Mk
| /7
A AN RN
s I\ N
g [\ / \\\\ p '
50 \ 7 \ ~7 = time
%// \ {_______\_,J__\\_—
_--"-_‘ \

\\

x \ “

(b) Inaccurate free vibration response due to a

large time step

L
/ N\

@rﬁ\MFLITUDE
ST oo T -=-————ame -~V nroay

"\, ~MUMERICAL SOLUTION "~

'—

i

g -0 K\\ EXACT satb'mﬁ—\v/// |

%_, f

S 0 N\ 1/ |
O ‘ I l wunic
g W\ / |

S -1.0 A o
=3 \ —= =— PERIOD
z i \\"/ (@ ELONGATION
Z e S o e L.

(c) Two errors associated with inaccurate numerical
solution

2
(]
[
=~
5]
&
=
T
r-l
(1)
[]
Fh
'.d
=
()
[e]
(e}
c
al
)
ct
o
. N
1. @
1]
e}
[}
o]
7]
(0]
Hh
o]
o]
[
oo
c
ja]
Q.
g
o]
o
(oW




m (3 a amel $ -
nm (i1.€. ampsitc
S

function of the time step size At used in the calculation and the natural

cti
period T of the numerical model. Examples of these types of error plots for

cal al o and Wilceon (1976) and in
[S A S < A ~ S L = A g \&=si vy CALINA Akl

114
ct

o orit
c oridT

Figures 9.3.2 and 9.3.3 of Hughe
t

- o
£
e

semidiscrete finite element mod

H O
o
"~
ot
(1]
n
(ad
"
O
o
[a]
3]
.—l
n
<
n
ot
(1]
8
”~
n
(4]
(4]
(@]
jn

ino interesgt
1gineerin g lnterest

()
wn



43. This part describes the construction of response spectra which are
graphs of the maximum values of acceleration, velocity, and/or displacement
S 3 / | daand MLICT LI

3 2 P s - i 2 -~ N -

response of an infinite series of damped elastic SDOF systems (Figure 10)
subjected to an acceleration time history Xground(t) . These maximum response

values for several levels of damping are plotted against undamped natural

period (units of seconds) or plotted against undamped natural cyclic frequency
(o]

f vibration (units of hertz or cycles/sec).

r

Valley Earthquake of 18 May 1940 (Richter magnitude = 6.7
station is founded on alluvium. The peak ground accelera
i (0.35 g) at 2.12 sec into ground shaking. The ground
velocity and displacement curves were obtained by double integration

c
acceleration time history. The peak velocity and peak dis

ground occur at 2.19 sec and 8.7 sec, respectively. It is typical for the

three peak values to occur at different times during earthquake shaking.

[

45. Figure 15 accelerogram started out as an analog trace recorded by

strong motion accelerograph. The acceleration trace was digitized and fil-
tered in order to control errors, with baseline and-transducer corrections
applied to the accelerogram Further details regarding the development of a
corrected accelerogram are described in Hudson (1979) The California Insti-
tute of Technology (Cal Tech) has a strong motion data program that develops
corrected accelerograms defined at 0.02 sec time intervals. The corrected
accelerograms are often referred to as the Cal Tech Volume II corrected
accelerograms.
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IMPERIAL VALLEY EARTHQUAKE MAY 18, 1840 - 2037 PST

IAOO1 40.001.0 EL CENTRO SITE IMPERIAL VALLEY IRRIGATION DISTRICT COMP SQOOE
O PEAK VALUES : ACCEL = 341.7 CM/SEC/SEC VELOCITY = 33.4 CM/SEC DISPL = 10.9 CM
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TIME, SECONDS
Figure 15. Ground acceleration and integrated ground velocity and

displacement time histories, 1940 El1 Centro SOOE component, from
Hudson (1979)

Figure 15 acceleration time history in this example. Each Figure 10 SDOF sys-
tem is distinguished by the value selected for its undamped natural period of
vibration T (Equation 13) or equivalently, its undamped natural cyclic fre-
quency of vibration f (Equation 14). 1In the following example g is
arbitrarily set equal to 0.02.

Peak Response Values for Each SDOF System

47. The construction of the response spectrum plots a succession of
SDOF systems with fundamental periods T ranging from near zero to values of
several seconds. For each SDOF system of value T, the dynamic response is
computed using one of the numerical procedures listed in Table 1. The dynamic

response of Figure 10 SDOF system is expressed in terms of either the relative
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response or the total response
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respectively.

49. A characteristic of relative displacement response spectra is the
absence of relative movement between the SDOF system and the ground during
earthquake shaking for approximately zero values of T (Figure 16). This is
due to the fact that the spring stiffness of a short period, high frequency,
SDOF system (refer to the equation for T in Table 2) is so large that it

neither stretches nor compresses during ground shaking. At the other extreme,

as the value of the spring stiffness is softened (k -+ 0) and the value for T

is greater than 20 sec, the value for S; approaches the maximum ground dis-
placement (not shown in Figure 16).
Spectral Pseudo-Velocitv

50.

a(t) is computed usin

The spectral pseudo-velocity, Sy or PSV, of the ground motion

groun

”~~
A
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Symbols Definition Description
Sp = SD I x(t) | pax Relative displacement response spectrum
or spectral displacement
SV i x{(®) | pax Relative velocity response spectrum
SA | S I Absolute acceleration response snectr
“*rocalN v/ max r =Y A e
b
o noxy fal & o Ceommtarnl cammas A _wvalAans
Dv = rov w OD - T op opeelial pdStuuu-voivciliu
i 2
n .
S, = PSA w? Sy = =5 Sp Spectral pseudo-acceleration
A D T2 D I F

w is the circular frequency of vibration of the undamped SDOF system in units
of radians per second.

natural (or fundamental) period of vibration of the undamped SDOF

for each of the SDOF systems analyzed. Sy is distinguished from the relative

for each T ranging in value from O to 3 sec (at closely spaced intervals) in

the figure (8 = 0.02). For example, with Sy = 2.48 inches for the T = 0.5 sec
{(w = 12.566 radians/sec) SDOF system, Sy = 31.16 inch/sec by Equation 32, and
identified in Figure 17b. The values of Sy for the T = 1.0 sec and T =
2.0 sec SDOF systems are listed in Table 3.

51. The term Sy is related to the maximum strain energy stored within

t
the linear spring portion of the SDOF system when the damping force is

neglected,
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Response Spectral Values for Three SDOF Systems

with 8 = 0.02, 1940 El1 Centro SOOE Component

T w Sp Sy “A

sec (radians/sec) (inch) (inch/sec) (inch/sec/sec) (g

0.5 12.566 2.48 31.16 391.62 1.014

1.0 6.283 6.61 41.53 260.95 0.676

2.0 . 3.142 8.84 27.77 87.25 0.226
w is the circular frequency of vibration of the undamped SDOF system

eslamara M d o +lhhn swateseean fnwr FismAdamamt-nl) cnwdAid AF rihevatdacm A +lin 2cond e o 3
WilCLEC 1 15 (LliIc latulal (UL lLuiluaqaliciital) peclluud UL vivrLatloll vl Lue uuuaulpeu
SDOF system.
The spectral pseudo-velocity, Sy = w Sp
The spectral pseudo-acceleration, S, = w? Sj
1 - nNnor NnNooC O 2 __ Y I 7 - -
1 g - 386.08858 inch/sec/sec
E: L ks2=2Lmsg? (33)
NErgy pay = E D ~ 3 m oy

59 o voln_ti1va 1relt\cif-\7 raennanaea enacntvyviim QU i¢ tha mavimm ahaenliitra
- e " AbiC LT < Ve v A \_J dLACOopVviIIOTC SpPT-LLwuL Iy o LIIT AN LUV QJOoV A AL
value of the computed relative velocity time history (from step 1 of Fig-
ure 10) for the SDOF system.
SV = [ K(E) | pax (34)
As the value of the period T approaches infinity (i.e. long period SDOF

systems), the value

| ).{ground ( t) Imax .

£
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Comparison of SV and SV Values

53. The pseudo-velocity value Sy for a SDOF system of period T is not

equivalent to the relative velocity value SV, as shown using expressions

derived for Sy and SV in Appendix A and expressed in terms of the Duhamel’s

Integral. However, for a limited range of periods, the value for Sy is an

approximation to the SV value, with the differences between the values

~
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values for SV. For long periods or low frequencies, the diffe

values for Sy and SV can be significant.

54. The spectral pseudo-acceleration, S, or PSA, of the ground motion

iummm(t) is computed using either
~ - 2% .
A Sp=w Sy =5 5 (35)
or
S, =wlg, =A% g (36)
A D T2 D

for each of the SDOF systems analyzed. S, is distinguished from the absolute
acceleration response spectrum SA to be described in a subsequent paragraph.

for Ficure 15
FPlgure 15

figure (8 = 0.02%). For example, with S, = 2.48 inches for the T = 0.5 sec
Sy, = 391.62 inch/sec/sec (1.014 g) by

Equation 36 and identified in Figure 17c. The values of S, for the T =
1.0 sec and T = 2.0 sec SDOF systems are listed in Table 3. The force com-

puted as the product of the mass m times S, is a good approximation to the

-—

PRSI S, L e A
xi force in the spring.

Absolute Acceleration Response Spectrum

55. The absolute acceleration response spectrum SA is the maximum abso-

lute value of the sum of the computed relative acceleration time history for

+1h

cne istor

IS
w
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Comparison of SA and SA Values
. : .
56. The pseudc-acceleration value S, for a SDOF system of period T is

equal to the absolute acceleration value SA when 8 = 0 (refer to Appendix A).

For the low levels of damping common to structural dynamics problems, the

57. For short period, high frequency, stiff SDOF systems (T
sec), the values for S, and SA are equal to the peak ground acceleration

re 18. As the period T approaches infin

b: SN (t) |___. as shown in Figu

nitv
i srouna N —/ jmaxs © 1 4.1 Tl n v ity

e SDOF systems), the values for SA and S, approach zero (not shown

fundamental period T in units of seconds (or cyclic frequency f in units of

hertz). The tripartite response spectrum plot for Figure 15 ground motion is

ranging in value from 0.04 to 3 sec in the figure (8 = 0.02). The plot uses
four logarithmic scales: the period T along the abscissa, Sy along the
ordinate

A 1g an axis oriented at 45 deg counterclockwise from heori-

zontal, and S, along an axis oriented at 45 deg clockwise from horizontal.
The response quantities Sy = 2.48 inches, Sy = 31.16 inch/sec, and S, =
1.014

o . 3 ol £
1.014 g for the T 0.5 1
55. Figure 19 tripartite response spectrum piot has the advantage of
condensing the information presented using three plots in Figure 17 onto a

single plot because of the interrelationships between the three terms (refer

'

z
]

w

1s 32, 35, and
60. The tripartite response spectrum plot for the 1940 El1 Centro ground

motion (Figure 15) in Figure 20 shows the response spectrum values for levels

— n9 n Nnc n 1 m~amd N D . 2 L2 o n 211 PP, _
o} 0, 0.02, 0.05, 0.1 and 0.2. This figure illustrates t

damping levels.
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Figure 18. Pseudo-acceleration and absolute acceleration linear response

spectrum plots

Fundamental Periods at Which the Maximum Values for

61. For the 1940 El Centro ground motion, the largest value of S, equal

1.29 g (1,265 cm/sec/sec), for an SDOF system with T equal to 0.47 sec (f =
3 Hz) and B = 0.02 (refer to Figure 17 or Figures 19 and 20). This value
3.7 times larger than the peak acceleration value of 0.35 g (341.7 cm/sec/

sec) of the accelerogram (Figure 15). The largest value for Sy, equal to
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Chopra (1981)

45,7 in./sec (18 cm/sec), is computed for a value of T equal to 0.84 sec (f =

L

1.19 Hz). The largest value for Sp, equal to 18 in. (7.0% cm), is compute
for a value of T equal to 10.5 sec (f = 0.095 Hz) (Figure 20). The order of

increasing T values (seconds) with the peak values of S,, Sy, and Sp is typi-
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reversed when the SDOF system is described in terms of increasing values of

cyclic frequency f (Hz) (Equation 14).
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Frequency Regions of the Tripartite Response Spectra

62. Although quite irregular with local peaks and spikes, the 1940 El
Centro earthquake motion tripartite response spectrum has the general shape of

a trapezoid or tent (refer to Figure 20) Thig ceneral =hape im

LY/ . —craT pYeiTaLSa =

distinct regions with regards to the frequency content of the 1940 El1 Centro
earthquake motion.

63. Within the short period range of 1/8 sec < T < 1/2 sec or

P - -l 1

P R I — 2 _1L
valentiy, i€ I1iirgit L

P o PRy s | - £ - 0O 1Y_ o 2 _ . =1 -
Lequelncy rdng OL £4 Nz <1 <\ 0 nz, DA is nearly con-

[l

e
ant (an average value of 0.95 g (931.6 cm/sec/sec) with a variation equal to

s
* 25%), as compared to the variation in Sy and Sy values (Figure 19).

range of the 1940 El Centro motion response spectra shown in Figure 19. The

first subregion is

g

ithin the period range of 1/2 sec < T < 1 sec (1 Hz < £ <

(18 Amlan~Y xralen
\+J (i Sel ) Vaaue

+ 2Ne\ e o~
LD }, ad» couu-©

/
\=
pared to the variation in S, and Sp values. Between 1 sec < T < 3 sec (or

0.33 Hz < £ < 1 Hz), Sy is nearly a constant 28 in./sec (11 cm/sec) value

. The long period range, T greater than 3 sec (the low frequency

5
range of f < 0.33 Hz), Sp averages 13 in (5.1 cm) for 8 = 0.02, with a varia-

rt
| e
®]
=]
D

N
=
»
|
t

o * 40% (Figure 20), For this accelerogram, the variation

average value of Sy is greater than the variations in the 5, and Sy values for

the short and intermediate period ranges, respectively.

Design Response Spectra -

66. The previously described trends in the spectral content with fre-

£
L

s mem ANy A ~ 10N . L. PR
yueiey v ne 1s/v s vy 1HuuanerLous
earthquake engineers and seismologists. Statistical analyses of response
spectra of earthquake motions were conducted by several groups with the

earthquake motions, characterizing shape or the frequency content of the

earthquake spectrum for the category under study and developing smooth, broad

antrim far niea
S i 4AVL woT

[

:
n t+tha Aacion
M LT UCTo.

L
(o)¢]

/]

o>

broad band spectrum ensures that sufficient seismic energy is delivered to all

frequencies.
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67. The results of some of the early ground motion studies are summa-
rized in Seed, Ugas, and Lysmer (1976}, Mchraz (1976¢), and Newmark and Hall

(1982). Their results show that the spectra frequency content of the recorded
accelerograms are dependent upon the earthquake magnitude, distance from

is founded (i.e., rock, shallow alluvium, or deep alluvium), and the tectonic
environment. Using standard regression techniques for selected ground motion

n the variation in spectral content with

frequency wsre quantitatively identified, as well as their variation about

their median values, expressed in terms of a standard deviation.

T rr_ 11

Newmark an all Design Response Spectrum

2l

68. The

[s]

Newmark and Hall (1982) design response spectrum exemplifies

(=4 < - x

.

the important features common to current procedures used to characterize the

spectral content of earthquake motions. A Newmark and Hall tripartite design
response spectrum for a moderate earthquake at a competent soil site corre-
sponds to the solid lime shown in Figure 21 for g = 0.05. The peak ground

acceleration, peak ground velocity, and peak ground displacement used in this

e 23
example and included for reference in this figure (dashed line), are 0.5 g
he spectral values

. .

are plotted as a function of the frequency f (Hz), rather tha

n 3
e
o
[a}
e
[}
Q.
-3
[\
7

Figures 19 and 20. The Newmark and Hall design response spec

ectrum comnosed of three digtinct regions o

. wvVvaa l’ T Vi Ll TT masvanct - 1>

h

co
spectral values for S,, Sy, and Sp, as identified in the figure. These spec-
tral amplitude values correspond to one standard deviation above the median

spectral values (84.1 % cumulative probability). Mean spectral values are

-

presented in the Newmark and Hall (1982) publication as well. A smooth, broad
band spectrum ensures that sufficient seismic energy is delivered to all fre-

quencies in a dynamic analysis of a MDOF semidiscrete structural model. For

details regarding the construct f the N lall des
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spectrum, consult their 1982 EERI monograph.
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1. This appendix describes the derivation of relationships for each of
the five response spectrum terms Sp, Sy, SV, S,, and SA (Table 2), expressed
in terms of Duhamel’s integral. The resulting relationships show that the

terms Sy and SV are not equivalent, while the terms S, and SA are equivalent
only if 8 = 0.
\

Duhamel's Integral Solution for Relative Displacement

(s} e

2. The relative displacement of the SDOF system was described in Part
IV involving Duhamel’s integral. The derivation of x(t) (Equation 22)
involved the representation of the load time history P(t) = - mXgrouna 85 @
series of loadings P(7)= - mXgouma applied to the SDOF system for short dura-
tion time intervals dr. The resulting relationship for a damped SDOF system
is given as

1 t . - - .
x(t) = - - f Rorouna (¥) €7Pef -9 gin [w,(t - 7)] dr (Al)
[}

where
wp = the damped angular frequency of vibration (Equation 16)
w = the undamped angular frequency of vibration (Equation 11)
B = the fraction of critical damping (Equation 12).
Relative Displacement Response Spectrum SD
Expressed in Terms of Duhamel's Integral
3. The relative displacement response spectrum Sp is equal to the maxi-
mum absolute relative displacement value | x(t) |n.x (Equation 25) for a
damped SDOF system of period T. Introducing Equation Al for the relative

displacement x(t), Sp becomes

g =|-1 ‘% (t) e s
D I ‘%J ground
[}

>
[



Spectral Pseudo-Velocity SV Expressed In Terms of Duhamel’s Integral

4. Sy may be expressed in terms of Duhamel’'s integral by introducing
the Duhamel’s integral solution for Sy into Equation 26, resulting in the

relationship for Sy is given by

S| 2 [* Zgrouna(®) @79 sin [wp(E - )] dr| (a3)
1] max

N
For an undamped SDOF system (8 = 0), this expression simplifies to

Sy =
0

- [ Zgrouna (%) 8in [w(t - 7)) d:l (A4)

Relative Velocity Response Spectrum SV Expressed

in Terms of Duhamel'’'s Integral

5. The relative velocity response spectrum SV is equal to the maximum
absolute relative velocity value I x(t) Imu: (Equation 28) for a damped SDOF
system of period T. Differentiating Duhamel’s integral solution for relative
displacement (Equation Al) with respect to time results in an expression for

x(t), with SV equal to the maximum absolute value of the resulting expression.

I - [* Xgroma () €9~ cos [yt - 1)] ar
° (A5)

+ B f‘x ouna(T) € POE-9 gin [ (t - 1)] &
Vl-ﬂi 0 grown max

Sv=

Refer to page 62 of Hudson (1979) or section 1.5 of Newmark and Rosenbluth
(1971)*. For an undamped SDOF system (B = 0) Equation A5 becomes

ar
<

SV = I -] Rgrouna (T) cos [ (t - 1)] dr | (A6)
0

max

* References cited in this appendix are included in the References at the end

c
i + +
cf the main text.
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Comparison of Spectral Pseudo-Velocity and Relative Velocity

Response Spectrum Relationships

6. Comparison of the expressions for Sy (Equation A3) and SV
(Equation A5) in the previous two paragraphs demonstrates the difference

.
peu

oAl a4 [ 1) T SN R . S TR [P R T S U
€€l L€ LwOo Lerms, ilne simpililed reiLdcionsiips ro

W
system (B8 = 0) shows the terms for Sy (Equation A4) and SV (Equation A6) dif-
fer by the trigonometric function used within Duhamel’s integral.

N

Spectral Pseudo-Acceleration SA Expressed in

7. S, may be expressed in terms of Duhame
T

+ha Nuiihamalla $mtancval anlait-daAan FAr C fntan Datiatian 2N raciil+stina in +ha
(ST 84— uiianac L =] J.ll\—csl.ql. SUALULLUVLL AUVL ‘JD FR YR VAY) u\iuabl.\lll TV LTCOoOuWwL \-Llls 4Ll “ilce
relationship for S, given by
2 t |
S. =| -9 ("% (1) ePelt-%) gin [w.(t - 1)] dr (A7)
A W J grouna -~ - ¢ =D c-
' 2% lmax

For an undamped SDOF system (B = 0), this expression simplifies to

SA=i-m ft Kgrouna (t) 8in [w(t - 7)] d‘ri (A8)
I ° |

max

Absolute Acceleration Response Spectrum in

Terms of Duhamel’s Integral

8. The absolute acceleration response spectrum SA is the maximum

absolute value of the sum of the computed relative acceleration time history

Favr £ha CNNL avratam nlisa +ha ovaiirnmAd annalavarian +ima hictavre
ALV L VLI [C VAV D]ﬂ\—clll PLUD wALC ELV\ALLU aAveocATLQLVALVLL w ALlC L O \'VL] -
SA =%, _..,(t) | =% (t) + X(t) | (A9)
| Xistan bmax — | Xgrouna t L) LE) | ax

To introduce Duhamel’s integral solution for relative displacement into this

relationship, Riota1(t) is expressed in terms of the relative velocity and

A3



relative displacement of the SDOF system. Rearranging the dynamic equilibrium

Equation 21 and introducing

+ % (Al10)

xtotal = jtg:round

results in the relationship

1e term within the absolute value in Equation A5

ua
into Equation All, results in the relationship

- I

. . ) ]
I 20f Jf Roromd (T) €PeE-% cos [a (t - 1)] dt |
sa+ ° (412)
w(1 - 2B2) pr o Buie - o) .
|+_"_"_“u .’ xgmund(f) e-bolt-t) gin [O)D(t - 1)) d.rl
J1-p2 A
I V- r v lma.x

Refer to page 63 of Hudson (1979) or section 1.5 of Newmark and Rosenbluth
(1971). For an undamped SDOF system (8 = 0) Equation Al2 becomes
t .
SA=|—w [ Kerouna (*) 8in [0 (t - 1)) dr | (A13)
| % max

Comparison of Spectral Pseudo-Acceleration and Absolute

9 Comparison of the expressions for S, (Equation A7) and SA (Equa-
tion Al2) in the previous two paragraphs demonstrates the difference between

erms. However, the simplified relationships for an undamped SDOF

t i
system (8 = 0) for S, (Equation A8) and SA (Equation Al3) are the same.
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